অ্যাকিলিস এবং কচ্ছপের প্যারাডক্স, প্রাচীন গ্রীক দার্শনিক জেনো দ্বারা সামনে রাখা, সাধারণ জ্ঞানকে অস্বীকার করে। এটি দাবি করে যে অ্যাথলেটিক লোক অ্যাকিলিস কখনই আনাড়ি কচ্ছপটিকে ধরতে পারবে না যদি এটি তার সামনে চলাচল শুরু করে। তাহলে এটা কি: সফিজম (প্রমাণে একটি ইচ্ছাকৃত ত্রুটি) বা একটি প্যারাডক্স (একটি বিবৃতি যার একটি যৌক্তিক ব্যাখ্যা আছে)? আসুন এই নিবন্ধটি বোঝার চেষ্টা করি।
জেনন কে?
জেনো খ্রিস্টপূর্ব ৪৮৮ অব্দে ইতালির এলে (আজকের ভেলিয়া) শহরে জন্মগ্রহণ করেন। তিনি এথেন্সে বেশ কয়েক বছর বসবাস করেছিলেন, যেখানে তিনি পারমেনাইডসের দার্শনিক ব্যবস্থা ব্যাখ্যা এবং বিকাশের জন্য তার সমস্ত শক্তি উৎসর্গ করেছিলেন। প্লেটোর লেখা থেকে জানা যায় যে জেনো পারমেনাইডসের চেয়ে 25 বছরের ছোট ছিলেন এবং খুব অল্প বয়সেই তার দার্শনিক পদ্ধতির প্রতিরক্ষা লিখেছিলেন। যদিও তার লেখা থেকে খুব কমই উদ্ধার করা হয়েছে। আমরা বেশিরভাগই তার সম্পর্কে কেবল অ্যারিস্টটলের লেখা থেকে জানি এবং এও যে এই দার্শনিক, জেনো অফ এলিয়া, তার দার্শনিকতার জন্য বিখ্যাত।যুক্তি।
প্যারাডক্সের বই
খ্রিস্টপূর্ব পঞ্চম শতাব্দীতে, গ্রীক দার্শনিক জেনো আন্দোলন, স্থান এবং সময়ের ঘটনা নিয়ে কাজ করেছিলেন। মানুষ, প্রাণী এবং বস্তু কীভাবে নড়াচড়া করতে পারে তা হল অ্যাকিলিস-কচ্ছপ প্যারাডক্সের ভিত্তি। গণিতবিদ এবং দার্শনিক চারটি প্যারাডক্স বা "গতির প্যারাডক্স" লিখেছিলেন যা 2500 বছর আগে জেনোর লেখা একটি বইতে অন্তর্ভুক্ত ছিল। তারা পারমেনাইডসের অবস্থানকে সমর্থন করেছিল যে আন্দোলন অসম্ভব। আমরা সবচেয়ে বিখ্যাত প্যারাডক্স বিবেচনা করব - অ্যাকিলিস এবং কাছিম সম্পর্কে।
গল্পটি হল: অ্যাকিলিস এবং কচ্ছপ দৌড়ে প্রতিযোগিতা করার সিদ্ধান্ত নিয়েছে। প্রতিযোগিতাটিকে আরও আকর্ষণীয় করার জন্য, কচ্ছপটি অ্যাকিলিসের চেয়ে কিছুটা দূরত্বে এগিয়ে ছিল, যেহেতু পরেরটি কচ্ছপের চেয়ে অনেক দ্রুত। প্যারাডক্সটি ছিল যে যতক্ষণ তাত্ত্বিকভাবে দৌড় অব্যাহত থাকবে, অ্যাকিলিস কখনই কচ্ছপকে ছাড়িয়ে যাবেন না।
প্যারাডক্সের একটি সংস্করণে, জেনো বলেছে যে আন্দোলন বলে কিছু নেই। অনেক বৈচিত্র রয়েছে, এরিস্টটল তাদের মধ্যে চারটির তালিকা করেছেন, যদিও এগুলোকে মূলত গতির দুটি প্যারাডক্সের ভিন্নতা বলা যেতে পারে। একটি সময় স্পর্শ করে এবং অন্যটি স্থান স্পর্শ করে৷
অ্যারিস্টটলের পদার্থবিদ্যা থেকে
অ্যারিস্টটলের পদার্থবিদ্যার বই VI.9 থেকে আপনি শিখতে পারেন যে
একটি দৌড়ে, দ্রুততম দৌড়বিদ কখনই ধীর গতিকে অতিক্রম করতে পারে না, কারণ অনুসরণকারীকে অবশ্যই প্রথমে সেই স্থানে পৌঁছাতে হবে যেখানে সাধনা শুরু হয়েছিল।
সুতরাং অ্যাকিলিস অনির্দিষ্ট সময়ের জন্য দৌড়ানোর পরে, তিনি একটি বিন্দুতে পৌঁছাবেনযেখান থেকে কচ্ছপের শুরু। কিন্তু ঠিক একই সময়ে, কচ্ছপটি এগিয়ে যাবে, তার পথের পরবর্তী বিন্দুতে পৌঁছে যাবে, তাই অ্যাকিলিসকে এখনও কচ্ছপের সাথে ধরতে হবে। আবার সে এগিয়ে যায়, কচ্ছপ যা দখল করত তার কাছে বেশ দ্রুত এগিয়ে যায়, আবার "আবিষ্কার করে" যে কচ্ছপটি একটু সামনে হামাগুড়ি দিয়েছে।
যতক্ষণ আপনি এটি পুনরাবৃত্তি করতে চান এই প্রক্রিয়াটি পুনরাবৃত্তি হয়। যেহেতু মাত্রা একটি মানুষের গঠন এবং সেইজন্য অসীম, আমরা কখনই সেই বিন্দুতে পৌঁছতে পারব না যেখানে অ্যাকিলিস কচ্ছপকে পরাজিত করে। এটি অ্যাকিলিস এবং কচ্ছপ সম্পর্কে জেনোর অবিকল প্যারাডক্স। যৌক্তিক যুক্তি অনুসরণ করে, অ্যাকিলিস কখনই কচ্ছপটিকে ধরতে সক্ষম হবে না। অনুশীলনে, অবশ্যই, স্প্রিন্টার অ্যাকিলিস ধীর কচ্ছপের পাশ দিয়ে ছুটে যাবে।
প্যারাডক্সের অর্থ
বর্ণনাটি প্রকৃত প্যারাডক্সের চেয়ে জটিল। এই কারণেই অনেকে বলে: "আমি অ্যাকিলিস এবং কচ্ছপের প্যারাডক্স বুঝতে পারি না।" আসলে যা স্পষ্ট নয় তা মন দিয়ে উপলব্ধি করা কঠিন, তবে ঠিক বিপরীতটি স্পষ্ট। সবকিছুই সমস্যার ব্যাখ্যার মধ্যেই রয়েছে। জেনো প্রমাণ করে যে মহাকাশ বিভাজ্য, এবং যেহেতু এটি বিভাজ্য, তাই কেউ মহাশূন্যের একটি নির্দিষ্ট বিন্দুতে পৌঁছাতে পারে না যখন অন্যটি সেই বিন্দু থেকে আরও এগিয়ে যায়।
জেনো, এই শর্তগুলির প্রেক্ষিতে, প্রমাণ করে যে অ্যাকিলিস কচ্ছপটিকে ধরতে পারে না, কারণ স্থান অসীমভাবে ছোট অংশে বিভক্ত হতে পারে, যেখানে কচ্ছপ সর্বদা সামনের স্থানের অংশ থাকবে। এটাও উল্লেখ করা উচিত যে যখন সময় একটি আন্দোলন, যেমনঅ্যারিস্টটল এটাই করেছিলেন, দুই রানার অনির্দিষ্টকালের জন্য সরে যাবে, এইভাবে স্থির। দেখা যাচ্ছে যে জেনন সঠিক!
অ্যাকিলিস এবং কচ্ছপের প্যারাডক্সের সমাধান
প্যারাডক্স দেখায় যে আমরা কীভাবে বিশ্ব সম্পর্কে চিন্তা করি এবং বিশ্ব আসলে কেমন তার মধ্যে পার্থক্য। জোসেফ মাজুর, গণিতের ইমেরিটাস অধ্যাপক এবং আলোকিত প্রতীকের লেখক, প্যারাডক্সটিকে একটি "কৌশল" হিসাবে বর্ণনা করেছেন যা আপনাকে স্থান, সময় এবং গতি সম্পর্কে ভুল উপায়ে চিন্তা করতে বাধ্য করে৷
তারপর আসে আমাদের চিন্তাধারায় ঠিক কী ভুল তা নির্ধারণ করার কাজ। নড়াচড়া সম্ভব, অবশ্যই, একজন দ্রুত মানব দৌড়বিদ দৌড়ে কচ্ছপকে ছাড়িয়ে যেতে পারে।
গণিতের পরিপ্রেক্ষিতে অ্যাকিলিস এবং কচ্ছপের প্যারাডক্স নিম্নরূপ:
- ধরে নিচ্ছি কচ্ছপটি 100 মিটার এগিয়ে, যখন অ্যাকিলিস 100 মিটার হেঁটেছে, তখন কাছিমটি তার থেকে 10 মিটার এগিয়ে থাকবে।
- যখন এটি ১০ মিটারে পৌঁছাবে, তখন কচ্ছপটি ১ মিটার এগিয়ে থাকবে।
- যখন এটি 1 মিটারে পৌঁছাবে, তখন কচ্ছপটি 0.1 মিটার এগিয়ে থাকবে৷
- যখন এটি 0.1 মিটারে পৌঁছাবে, তখন কচ্ছপটি 0.01 মিটার এগিয়ে থাকবে৷
সুতরাং একই প্রক্রিয়ায়, অ্যাকিলিস অগণিত পরাজয়ের সম্মুখীন হবে। অবশ্যই, আজ আমরা জানি যে 100 + 10 + 1 + 0, 1 + 0, 001 + …=111, 111 … সঠিক সংখ্যা এবং অ্যাকিলিস কখন কচ্ছপকে মারবে তা নির্ধারণ করে।
অনন্তের দিকে, এর বাইরে নয়
জেনোর উদাহরণ দ্বারা সৃষ্ট বিভ্রান্তিটি প্রাথমিকভাবে অসীম সংখ্যক বিন্দু থেকে হয়েছিলকচ্ছপ স্থিরভাবে সরে যাওয়ায় অ্যাকিলিসকে প্রথমে যে পর্যবেক্ষণ এবং অবস্থানে পৌঁছাতে হয়েছিল। এইভাবে, অ্যাকিলিসের পক্ষে কচ্ছপকে ছাড়িয়ে যাওয়া প্রায় অসম্ভব হবে, একে ছাড়িয়ে যাওয়া যাক।
প্রথমত, অ্যাকিলিস এবং কচ্ছপের মধ্যে স্থানিক দূরত্ব দিন দিন ছোট হচ্ছে। কিন্তু দূরত্ব কভার করার জন্য প্রয়োজনীয় সময় আনুপাতিক হারে কমে যায়। জেনোর সৃষ্ট সমস্যাটি গতির বিন্দুকে অসীমের দিকে প্রসারিত করে। কিন্তু তখনো কোনো গাণিতিক ধারণা ছিল না।
আপনি জানেন, শুধুমাত্র 17 শতকের শেষের দিকে, ক্যালকুলাসে এই সমস্যার গাণিতিকভাবে যুক্তিযুক্ত সমাধান খুঁজে পাওয়া সম্ভব হয়েছিল। নিউটন এবং লাইবনিজ আনুষ্ঠানিক গাণিতিক পদ্ধতির সাথে অসীমের কাছে পৌঁছেছিলেন।
ইংরেজি গণিতবিদ, যুক্তিবিদ এবং দার্শনিক বার্ট্রান্ড রাসেল বলেছিলেন যে "…জেনোর যুক্তিগুলি এক বা অন্য আকারে আমাদের সময় থেকে বর্তমান সময়ে প্রস্তাবিত স্থান এবং অসীমতার প্রায় সমস্ত তত্ত্বের ভিত্তি প্রদান করেছিল…"
এটা কি কুতর্ক নাকি প্যারাডক্স?
দার্শনিক দৃষ্টিকোণ থেকে, অ্যাকিলিস এবং কচ্ছপ একটি প্যারাডক্স। যুক্তিতে কোন দ্বন্দ্ব এবং ত্রুটি নেই। সবকিছু লক্ষ্য নির্ধারণের উপর ভিত্তি করে। অ্যাকিলিসের লক্ষ্য ছিল ক্যাচ আপ এবং ওভারটেক করা নয়, বরং ধরার। লক্ষ্য নির্ধারণ - ধরা. এটি কখনই দ্রুত পায়ের অ্যাকিলিসকে কচ্ছপকে ওভারটেক করতে বা ছাড়িয়ে যেতে দেবে না। এই ক্ষেত্রে, পদার্থবিদ্যার আইন বা গণিত কোনোটাই অ্যাকিলিসকে এই ধীর প্রাণীকে ছাড়িয়ে যেতে সাহায্য করতে পারে না।
এই মধ্যযুগীয় দার্শনিক প্যারাডক্সের জন্য ধন্যবাদ,জেনো যা তৈরি করেছে, আমরা উপসংহারে আসতে পারি: আপনাকে সঠিকভাবে লক্ষ্য সেট করতে হবে এবং এর দিকে যেতে হবে। কারও সাথে ধরার প্রয়াসে, আপনি সর্বদা দ্বিতীয় থাকবেন, এবং তারপরেও সেরা। একজন ব্যক্তি কোন লক্ষ্য স্থির করেন তা জেনে, কেউ আত্মবিশ্বাসের সাথে বলতে পারে যে সে তা অর্জন করবে নাকি তার সময়, সম্পদ এবং শক্তি নষ্ট করবে।
বাস্তব জীবনে, ভুল লক্ষ্য নির্ধারণের অনেক উদাহরণ রয়েছে। আর অ্যাকিলিস এবং কচ্ছপের প্যারাডক্স ততদিন প্রাসঙ্গিক থাকবে যতদিন মানবতা থাকবে।